Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Journal of the Cameroon Academy of Sciences ; 18(Suppl):520-529, 2022.
Article in French | CAB Abstracts | ID: covidwho-2322929

ABSTRACT

The proteins (37%), carbohydrates (24.4%) and lipids (30.1%) contents of S. platensis from Nomayos provide the body with its structural and energy needs for about 518.8 Kcal per 100g of spirulina. Polyphenols (56.4 mEq. QE / g ES.), flavanols (13.2 mEq. QE / g ES.) flavonoids (21.2 mEq. QE / g ES.), carotenoids (3, 8%) and phycocyanin (16.15%) is responsible of its antioxidant capacities (7.5 + 0.33 mg eq. Vit C/g ES) and for a significant decrease in malondialdehyde MDA (< 0.001) concentration. Zinc (25 mG/Kg), Iron (256 mG/Kg), Selenium (1.24 mG/Kg), Manganese (23mG/Kg) and Copper (28.95 mG/Kg) reinforce this antioxidant power because they are cofactors of enzymes (Superoxide dismutase, Peroxidase, Catalase) which ensure the fight against free radicals. The presence of phycocyanin is an asset for the anti-inflammatory action. The significant decrease in IL-8 (p < 0.001) and TNF alpha (p < 0.04) levels confirms this property. On the other hand, the nonsignificant increase in Il-6 (1.56 to 2.18 pg/m;p > 0.05) would be partly responsible for the rise in CD4 levels (p < 0.001) and the reduction in viral load in immune deficiency patients (p = 0.000) supplemented with spirulina. In conclusion, S. platensis from Nomayos by its antioxidant, anti-inflammatory and immuno-stimulatory properties would be a good supplement food for subjects at risk of developing severe forms of COVID-19.

2.
Cells ; 12(7)2023 04 02.
Article in English | MEDLINE | ID: covidwho-2305742

ABSTRACT

Air pollution has been a significant problem threatening human health for years. One commonly reported air pollutant is benzo(a)pyrene, a dangerous compound with carcinogenic properties. Values which exceed normative values for benzo(a)pyrene concentration in the air are often noted in many regions of the world. Studies on the worldwide spread of COVID-19 since 2020, as well as avian flu, measles, and SARS, have proven that viruses and bacteria are more dangerous to human health when they occur in polluted air. Regarding cyanobacteria and microalgae, little is known about their relationship with benzo(a)pyrene. The question is whether these microorganisms can pose a threat when present in poor quality air. We initially assessed whether cyanobacteria and microalgae isolated from the atmosphere are sensitive to changes in PAH concentrations and whether they can accumulate or degrade PAHs. The presence of B(a)P has significantly affected both the quantity of cyanobacteria and microalgae cells as well as their chlorophyll a (chl a) content and their ability to fluorescence. For many cyanobacteria and microalgae, an increase in cell numbers was observed after the addition of B(a)P. Therefore, even slight air pollution with benzo(a)pyrene is likely to facilitate the growth of airborne cyanobacteria and microalgae. The results provided an assessment of the organisms that are most susceptible to cellular stress following exposure to benzo(a)pyrene, as well as the potential consequences for the environment. Additionally, the results indicated that green algae have the greatest potential for degrading PAHs, making their use a promising bioremediation approach. Kirchneriella sp. demonstrated the highest average degradation of B(a)P, with the above-mentioned research indicating it can even degrade up to 80% of B(a)P. The other studied green algae exhibited a lower, yet still significant, B(a)P degradation rate exceeding 50% when compared to cyanobacteria and diatoms.


Subject(s)
COVID-19 , Chlorophyta , Cyanobacteria , Microalgae , Polycyclic Aromatic Hydrocarbons , Humans , Animals , Microalgae/metabolism , Benzo(a)pyrene , Carcinogens , Chlorophyll A/metabolism , Cyanobacteria/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Chlorophyta/metabolism
3.
Antibiotiki i Khimioterapiya ; 67(5-6):39-60, 2022.
Article in Russian | EMBASE | ID: covidwho-2252015

ABSTRACT

Lectins are a group of highly specific carbohydrate-binding proteins with a wide spectrum of action, involved in the so-called <<first line>> of body defense. These unique biomolecules show high specificity for various mono- and oligosaccharides, primarily for viral and bacterial glycoconjugates. Cyanobacteria lectins are effective against enveloped viruses and are an appealing alternative to existing synthetic drugs. Virtually complete absence of resistance formation in viruses to these compounds is known. The purpose of this review is to analyze, summarize, and discuss the results of experimental studies in vivo and in vitro, illustrating the mechanisms of action and antiviral effects of lectins obtained from cyanobacteria in relation to the most dangerous and socially significant viruses: SARS-Cov-2, HIV, Ebola viruses, influenza, and hepatitis C. In addition, the article outlines some of the challenges that must be overcome in order to obtain effective antiviral drugs in the future.Copyright © Team of Authors, 2022.

4.
Antibiotiki i Khimioterapiya ; 67(5-6):39-60, 2022.
Article in Russian | EMBASE | ID: covidwho-2252014

ABSTRACT

Lectins are a group of highly specific carbohydrate-binding proteins with a wide spectrum of action, involved in the so-called <<first line>> of body defense. These unique biomolecules show high specificity for various mono- and oligosaccharides, primarily for viral and bacterial glycoconjugates. Cyanobacteria lectins are effective against enveloped viruses and are an appealing alternative to existing synthetic drugs. Virtually complete absence of resistance formation in viruses to these compounds is known. The purpose of this review is to analyze, summarize, and discuss the results of experimental studies in vivo and in vitro, illustrating the mechanisms of action and antiviral effects of lectins obtained from cyanobacteria in relation to the most dangerous and socially significant viruses: SARS-Cov-2, HIV, Ebola viruses, influenza, and hepatitis C. In addition, the article outlines some of the challenges that must be overcome in order to obtain effective antiviral drugs in the future.Copyright © Team of Authors, 2022.

5.
Arch Microbiol ; 205(5): 164, 2023 Apr 03.
Article in English | MEDLINE | ID: covidwho-2281700

ABSTRACT

Cyanometabolites are active compounds derived from cyanobacteria that include small low molecular weight peptides, oligosaccharides, lectins, phenols, fatty acids, and alkaloids. Some of these compounds may pose a threat to human and environment. However, majority of them are known to have various health benefits with antiviral properties against pathogenic viruses including Human immunodeficiency virus (HIV), Ebola virus (EBOV), Herpes simplex virus (HSV), Influenza A virus (IAV) etc. Cyanometabolites classified as lectins include scytovirin (SVN), Oscillatoria agardhii agglutinin (OAAH), cyanovirin-N (CV-N), Microcystis viridis lectin (MVL), and microvirin (MVN) also possess a potent antiviral activity against viral diseases with unique properties to recognize different viral epitopes. Studies showed that a small linear peptide, microginin FR1, isolated from a water bloom of Microcystis species, inhibits angiotensin-converting enzyme (ACE), making it useful for the treatment of coronavirus disease 2019 (COVID-19). Our review provides an overview of the antiviral properties of cyanobacteria from the late 90s till now and emphasizes the significance of their metabolites in combating viral diseases, particularly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has received limited attention in previous publications. The enormous medicinal potential of cyanobacteria is also emphasized in this review, which justifies their use as a dietary supplement to fend off pandemics in future.


Subject(s)
COVID-19 , Cyanobacteria , Humans , Antiviral Agents/metabolism , SARS-CoV-2/metabolism , Lectins , Cyanobacteria/chemistry
6.
Mol Biol Rep ; 49(11): 11149-11167, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2048440

ABSTRACT

Microbes are a huge contributor to people's health around the world since they produce a lot of beneficial secondary metabolites. Cyanobacteria are photosynthetic prokaryotic bacteria cosmopolitan in nature. Adaptability of cyanobacteria to wide spectrum of environment can be contributed to the production of various secondary metabolites which are also therapeutic in nature. As a result, they are a good option for the development of medicinal molecules. These metabolites could be interesting COVID-19 therapeutic options because the majority of these compounds have demonstrated substantial pharmacological actions, such as neurotoxicity, cytotoxicity, and antiviral activity against HCMV, HSV-1, HHV-6, and HIV-1. They have been reported to produce a single metabolite active against wide spectrum of microbes like Fischerella ambigua produces ambigols active against bacteria, fungi and protozoa. Similarly, Moorea producens produces malygomides O and P, majusculamide C and somocystinamide which are active against bacteria, fungi and tumour cells, respectively. In addition to the above, Moorea sp. produce apratoxin A and dolastatin 15 possessing anti cancerous activity but unfortunately till date only brentuximab vedotin (trade name Adcetris), a medication derived from marine peptides, for the treatment of Hodgkin lymphoma and anaplastic large cell lymphoma has been approved by FDA. However, several publications have effectively described and categorised cyanobacterial medicines based on their biological action. In present review, an effort is made to categorize cyanobacterial metabolites on the basis of their phycochemistry. The goal of this review is to categorise cyanobacterial metabolites based on their chemical functional group, which has yet to be described.


Subject(s)
COVID-19 , Cyanobacteria , Humans , Cyanobacteria/metabolism
7.
Clean Technol Environ Policy ; 24(9): 2659-2679, 2022.
Article in English | MEDLINE | ID: covidwho-1935820

ABSTRACT

Abstract: Plastics are undebatably a hot topic of discussion across international forums due to their huge ecological footprint. The onset of COVID-19 pandemic has exacerbated the issue in an irreversible manner. Bioplastics produced from renewable sources are a result of lookout for sustainable alternatives. Replacing a ton of synthetic plastics with biobased ones reduces 1.8 tons CO2 emissions. Here, we begin with highlighting the problem statement-Plastic accumulation and its associated negative impacts. Microalgae outperforms plants and microbes, when used to produce bioplastic due to superior growth rate, non-competitive nature to food, and simultaneous wastewater remediation. They have minimal nutrient requirements and less dependency on climatic conditions for cultivation. These are the reasons for current boom in the algal bioplastic market. However, it is still not at par in price with the petroleum-based plastics. A brief market research has been done to better evaluate the current global status and future scope of algal bioplastics. The objective of this review is to propose possible solutions to resolve the challenges in scale up of bioplastic industry. Various bioplastic production technologies have been comprehensively discussed along with their optimization strategies. Overall studies discussed show that in order to make it cost competitive adopting a multi-dimensional approach like algal biorefinery is the best way out. A holistic comparison of any bio-based alternative with its conventional counterpart is imperative to assess its impact upon commercialization. Therefore, the review concludes with the life cycle assessment of bioplastics and measures to improve their inclusivity in a circular economy.

8.
Agronomy ; 12(1):117, 2022.
Article in English | ProQuest Central | ID: covidwho-1638742

ABSTRACT

Pesticide treatment dramatically reduces crop loss and enhances agricultural productivity, promoting global food security and economic growth. However, owing to high accrual and persistent tendency, pesticides could create significant ecological consequences when used often. Lately, the perspective has transitioned to implementing biological material, environmentally sustainable, and economical strategies via bioremediation approaches to eradicate pesticides contaminations. Microalgae were regarded as a prominent option for the detoxification of such hazardous contaminants. Sustainable application and remediation strategies of pesticides pollutants in the agriculture system by microalgae from the past studies, and recent advancements were integrated into this review. Bibliometric strategies to enhance the research advancements in pesticide bioremediation by microalgae between 2010 and 2020 were implemented through critical comparative analysis of documents from Scopus and PubMed databases. As a result, this study identified a growing annual research trend from 1994 to 2020 (nScopus > nPubMed). Global production of pesticide remediation by microalgae demonstrated significant contributions from India (23.8%) and China (16.7%). The author’s keyword clustering was visualized using bibliometric software (VOSviewer), which revealed the strongest network formed by “microalgae”, “bioremediation”, “biodegradation”, “cyanobacteria”, “wastewater”, and “pesticide” as significant to the research topic. Hence, this bibliometric review will facilitate the future roadmap for many scholars and authors who were drawing attention to the burgeoning research on bioremediation of pesticides to counteract environmental impacts while maintaining food sustainability.

9.
Atmosphere ; 13(1):45, 2022.
Article in English | ProQuest Central | ID: covidwho-1635429

ABSTRACT

We characterized the composition, diversity, and potential bacterial aerosol sources in Athens’ urban air by DNA barcoding (analysis of 16S rRNA genes) during three seasons in 2019. Air samples were collected using the recently developed Rutgers Electrostatic Passive Sampler (REPS). It is the first field application of REPS to study bacterial aerosol diversity. REPS samplers captured a sufficient amount of biological material to demonstrate the diversity of airborne bacteria and their variability over time. Overall, in the air of Athens, we detected 793 operational taxonomic units (OTUs), which were fully classified into the six distinct taxonomic categories (Phylum, Class, Order, etc.). These OTUs belonged to Phyla Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Cyanobacteria, and Fusobacteria. We found a complex community of bacterial aerosols with several opportunistic or potential pathogens in Athens’ urban air. Referring to the available literature, we discuss the likely sources of observed airborne bacteria, including soil, plants, animals, and humans. Our results on bacterial diversity are comparable to earlier studies, even though the sampling sites are different or geographically distant. However, the exact functional and ecological role of bioaerosols and, even more importantly, their impact on public health and the ecosystem requires further air monitoring and analysis.

10.
Antarctic Science ; 33(6):645-659, 2021.
Article in English | ProQuest Central | ID: covidwho-1621176

ABSTRACT

Human- and animal-impacted sites in Antarctica can be contaminated with heavy metals, as well as areas influenced by underlying geology and naturally occurring minerals. The present study examined the relationship between heavy metal presence and soil microalgal occurrence across a range of human-impacted and undisturbed locations on Signy Island. Microalgae were identified based on cultures that developed after inoculation into an enriched medium. Twenty-nine microalgae representing Cyanobacteria, Bacillariophyta, Chlorophyta and Tribophyta were identified. High levels of As, Ca, Cd, Cu and Zn were detected in Gourlay Peninsula and North Point, both locations hosting dense penguin rookeries. Samples from Berntsen Point, the location of most intense human activity both today and historically, contained high levels of Pb. The contamination factor and pollution load index confirmed that the former locations were polluted by Cd, Cu and Zn, with these being of marine biogenic origin. Variation in the microalgal community was significantly correlated with concentrations of Mn, Ca, Mg, Fe, Zn, Cd, Co, Cr and Cu. However, the overall proportion of the total variation contributed by all metals was low (16.11%). Other factors not measured in this study are likely to underlie the majority of the observed variation in microalgal community composition between sampling locations.

11.
Journal of Experimental Biology and Agricultural Sciences ; 9(Suppl. 1):S43-S48, 2021.
Article in English | CAB Abstracts | ID: covidwho-1574943

ABSTRACT

The recent outbreak of Corona Virus Disease (COVID-19) and the surge in accelerating the development of a vaccine to fight against the SARS-CoV-2 virus has imposed greater challenges to humanity worldwide. There is lack of research into the production of effective vaccines and methods of treatment against viral infections. As of now, strategies encompassing antiviral drugs and corticosteroids alongside mechanical respiratory treatment are in practice as frontline treatments. Though studies have reported that microalgae possess antiviral properties, only a few cases have presented the existence of antiviral compounds such as algal polysaccharides, lectins, aggluttinins, scytovirin, algal lipids such as sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerides (MGDG) and digalactosyldiacylglycerides (DGDG), and algal biopigments especially chlorophyll analogues, marennine, phycobiliproteins, phycocyanin, phycoerythrin and allophycocyanin that are derived from marine and freshwater microalgae. Given the chemodiversity of bioactive compounds from microalgae and the present scenario, algal biotechnology is seen as a prospective source of antiviral and anti-inflammatory compounds that can be used to develop antiviral agents. Microalgae with potential as antivirals and microalgae derived functional compounds to treat viral diseases are summarized and can be used as a reference in developing algae-derived antivirals to treat SARS-CoV-2 and other similar viruses.

12.
Sustainability ; 13(23):13428, 2021.
Article in English | ProQuest Central | ID: covidwho-1561590

ABSTRACT

Currently, thanks to the development of sensitive analytical techniques, the presence of different emerging pollutants in aquatic ecosystems has been evidenced;however, most of them have not been submitted to any regulation so far. Among emerging contaminants, antimicrobials have received particular attention in recent decades, mainly due to the concerning development of antibiotic resistance observed in bacteria, but little is known about the toxicological and ecological impact that antimicrobials can have on aquatic ecosystems. Their high consumption in human and veterinary medicine, food-producing animals and aquaculture, as well as persistence and poor absorption have caused antimicrobials to be discharged into receiving waters, with or without prior treatment, where they have been detected at ng-mg L−1 levels with the potential to cause effects on the various organisms living within aquatic systems. This review presents the current knowledge on the occurrence of antimicrobials in aquatic ecosystems, emphasizing their occurrence in different environmental matrixes and the effects on aquatic organisms (cyanobacteria, microalgae, invertebrates and vertebrates).

13.
Microorganisms ; 9(8)2021 Jul 27.
Article in English | MEDLINE | ID: covidwho-1376908

ABSTRACT

Microalgae and cyanobacteria are good sources for prospecting metabolites of biotechnological interest, including glucosidase inhibitors. These inhibitors act on enzymes related to various biochemical processes; they are involved in metabolic diseases, such as diabetes and Gaucher disease, tumors and viral infections, thus, they are interesting hubs for the development of new drugs and therapies. In this work, the screening of 63 environmental samples collected in the Brazilian Amazon found activity against ß-glucosidase, of at least 60 min, in 13.85% of the tested extracts, with Synechococcus sp. GFB01 showing inhibitory activity of 90.2% for α-glucosidase and 96.9% against ß-glucosidase. It was found that the nutritional limitation due to a reduction in the concentration of sodium nitrate, despite not being sufficient to cause changes in cell growth and photosynthetic apparatus, resulted in reduced production of α and ß-glucosidase inhibitors and differential protein expression. The proteomic analysis of cyanobacteria isolated from the Amazon is unprecedented, with this being the first work to evaluate the protein expression of Synechococcus sp. GFB01 subjected to nutritional stress. This evaluation helps to better understand the metabolic responses of this organism, especially related to the production of inhibitors, adding knowledge to the industrial potential of these cyanobacterial compounds.

14.
Molecules ; 26(17)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1374471

ABSTRACT

The emergence of COVID-19 continues to pose severe threats to global public health. The pandemic has infected over 171 million people and claimed more than 3.5 million lives to date. We investigated the binding potential of antiviral cyanobacterial proteins including cyanovirin-N, scytovirin and phycocyanin with fundamental proteins involved in attachment and replication of SARS-CoV-2. Cyanovirin-N displayed the highest binding energy scores (-16.8 ± 0.02 kcal/mol, -12.3 ± 0.03 kcal/mol and -13.4 ± 0.02 kcal/mol, respectively) with the spike protein, the main protease (Mpro) and the papainlike protease (PLpro) of SARS-CoV-2. Cyanovirin-N was observed to interact with the crucial residues involved in the attachment of the human ACE2 receptor. Analysis of the binding affinities calculated employing the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) approach revealed that all forms of energy, except the polar solvation energy, favourably contributed to the interactions of cyanovirin-N with the viral proteins. With particular emphasis on cyanovirin-N, the current work presents evidence for the potential inhibition of SARS-CoV-2 by cyanobacterial proteins, and offers the opportunity for in vitro and in vivo experiments to deploy the cyanobacterial proteins as valuable therapeutics against COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Bacterial Proteins/pharmacology , COVID-19 Drug Treatment , Coronavirus Protease Inhibitors/pharmacology , Antiviral Agents/therapeutic use , Bacterial Proteins/therapeutic use , Bacterial Proteins/ultrastructure , COVID-19/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/ultrastructure , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/metabolism , Coronavirus Papain-Like Proteases/ultrastructure , Coronavirus Protease Inhibitors/therapeutic use , Coronavirus Protease Inhibitors/ultrastructure , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Interaction Mapping , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/ultrastructure , X-Ray Diffraction
15.
Toxins (Basel) ; 13(7)2021 07 08.
Article in English | MEDLINE | ID: covidwho-1302455

ABSTRACT

Cyanobacteria are ubiquitous photosynthetic microorganisms considered as important contributors to the formation of Earth's atmosphere and to the process of nitrogen fixation. However, they are also frequently associated with toxic blooms, named cyanobacterial harmful algal blooms (cyanoHABs). This paper reports on an unusual out-of-season cyanoHAB and its dynamics during the COVID-19 pandemic, in Lake Avernus, South Italy. Fast detection strategy (FDS) was used to assess this phenomenon, through the integration of satellite imagery and biomolecular investigation of the environmental samples. Data obtained unveiled a widespread Microcystis sp. bloom in February 2020 (i.e., winter season in Italy), which completely disappeared at the end of the following COVID-19 lockdown, when almost all urban activities were suspended. Due to potential harmfulness of cyanoHABs, crude extracts from the "winter bloom" were evaluated for their cytotoxicity in two different human cell lines, namely normal dermal fibroblasts (NHDF) and breast adenocarcinoma cells (MCF-7). The chloroform extract was shown to exert the highest cytotoxic activity, which has been correlated to the presence of cyanotoxins, i.e., microcystins, micropeptins, anabaenopeptins, and aeruginopeptins, detected by molecular networking analysis of liquid chromatography tandem mass spectrometry (LC-MS/MS) data.


Subject(s)
Cyanobacteria , Harmful Algal Bloom , Lakes/microbiology , Bacterial Toxins/analysis , Bacterial Toxins/toxicity , COVID-19/epidemiology , Cell Line , Cell Survival/drug effects , Cyanobacteria/genetics , DNA, Bacterial/analysis , Environmental Monitoring , Human Activities , Humans , Italy/epidemiology , Microcystis , Pandemics , SARS-CoV-2 , Satellite Imagery
16.
Cells ; 10(7)2021 06 28.
Article in English | MEDLINE | ID: covidwho-1288809

ABSTRACT

Betacoronaviruses, responsible for the "Severe Acute Respiratory Syndrome" (SARS) and the "Middle East Respiratory Syndrome" (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.


Subject(s)
Lectins/pharmacology , Middle East Respiratory Syndrome Coronavirus/metabolism , SARS-CoV-2/metabolism , Severe acute respiratory syndrome-related coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/virology , Cyanobacteria/chemistry , Drug Delivery Systems/methods , Fungi/chemistry , Humans , Lectins/isolation & purification , Lectins/therapeutic use , Middle East Respiratory Syndrome Coronavirus/physiology , Plants/chemistry , Protein Binding , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/physiology , Species Specificity , Virus Internalization/drug effects , COVID-19 Drug Treatment
17.
J Appl Phycol ; 33(3): 1579-1602, 2021.
Article in English | MEDLINE | ID: covidwho-1155296

ABSTRACT

A race is currently being launched as a result of the international health situation. This race aims to find, by various means, weapons to counter the Covid-19 pandemic now widespread on all continents. The aquatic world and in particular that of photosynthetic organisms is regularly highlighted but paradoxically little exploited in view of the tremendous possibilities it offers. Computational tools allow not only to clear the existence and activity of many molecules but also to model their relationships with receptors identified in potential hosts. On a routine basis, our laboratory carries out a research activity on functionalities of molecules derived from algae using in silico tools. We have implemented our skills in algae biology and in modeling, as tests in order to identify molecules expressed by the genus Arthrospira showing an antiviral potential and more particularly anti-SARS-CoV-2. Using consensus docking and redocking with Autodock Vina and SwissDock, we were able to identify several promising molecules from Arthrospira: phycocyanobilin, phycoerythrobilin, phycourobilin, and folic acid. These four compounds showed reliable binding energies comprised between - 6.95 and - 7.45 kcal.mol-1 in Autodock Vina and between - 9.285 and - 10.35 kcal.mol-1 with SwissDock. Toxicity prediction as well as current regulations provided promising arguments for the inclusion of these compounds in further studies to assess their ability to compete with the SARS-CoV-2/ACE2 complex both in vitro and in vivo. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10811-021-02372-9.

18.
Biomolecules ; 11(3)2021 03 22.
Article in English | MEDLINE | ID: covidwho-1151739

ABSTRACT

Global processes, such as climate change, frequent and distant travelling and population growth, increase the risk of viral infection spread. Unfortunately, the number of effective and accessible medicines for the prevention and treatment of these infections is limited. Therefore, in recent years, efforts have been intensified to develop new antiviral medicines or vaccines. In this review article, the structure and activity of the most promising antiviral cyanobacterial products are presented. The antiviral cyanometabolites are mainly active against the human immunodeficiency virus (HIV) and other enveloped viruses such as herpes simplex virus (HSV), Ebola or the influenza viruses. The majority of the metabolites are classified as lectins, monomeric or dimeric proteins with unique amino acid sequences. They all show activity at the nanomolar range but differ in carbohydrate specificity and recognize a different epitope on high mannose oligosaccharides. The cyanobacterial lectins include cyanovirin-N (CV-N), scytovirin (SVN), microvirin (MVN), Microcystisviridis lectin (MVL), and Oscillatoria agardhii agglutinin (OAA). Cyanobacterial polysaccharides, peptides, and other metabolites also have potential to be used as antiviral drugs. The sulfated polysaccharide, calcium spirulan (CA-SP), inhibited infection by enveloped viruses, stimulated the immune system's response, and showed antitumor activity. Microginins, the linear peptides, inhibit angiotensin-converting enzyme (ACE), therefore, their use in the treatment of COVID-19 patients with injury of the ACE2 expressing organs is considered. In addition, many cyanobacterial extracts were revealed to have antiviral activities, but the active agents have not been identified. This fact provides a good basis for further studies on the therapeutic potential of these microorganisms.


Subject(s)
Antiviral Agents/chemistry , Cyanobacteria/chemistry , HIV/drug effects , Lectins/pharmacology , Polysaccharides/pharmacology , SARS-CoV-2/drug effects , Simplexvirus/drug effects , Anti-HIV Agents/pharmacology , Antineoplastic Agents/pharmacology , Antiviral Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Carbohydrates/chemistry , Carbohydrates/pharmacology , Cyanobacteria/metabolism , HIV Infections/drug therapy , Humans , Lectins/chemistry , Lectins/metabolism , Polysaccharides/chemistry , Polysaccharides/metabolism , COVID-19 Drug Treatment
19.
Front Microbiol ; 11: 572131, 2020.
Article in English | MEDLINE | ID: covidwho-945677

ABSTRACT

Cyanobacteria are found in most illuminated environments and are key players in global carbon and nitrogen cycling. Although significant efforts have been made to advance our understanding of this important phylum, still little is known about how members of the cyanobacteria affect and respond to changes in complex biological systems. This lack of knowledge is in part due to our dependence on pure cultures when determining the metabolism and function of a microorganism. We took advantage of the Culture Collection of Microorganisms from Extreme Environments (CCMEE), a collection of more than 1,000 publicly available photosynthetic co-cultures maintained at the Pacific Northwest National Laboratory, and assessed via 16S rRNA amplicon sequencing if samples readily available from public culture collection could be used in the future to generate new insights into the role of microbial communities in global and local carbon and nitrogen cycling. Results from this work support the existing notion that culture depositories in general hold the potential to advance fundamental and applied research. Although it remains to be seen if co-cultures can be used at large scale to infer roles of individual organisms, samples that are publicly available from existing co-cultures depositories, such as the CCMEE, might be an economical starting point for such studies. Access to archived biological samples, without the need for costly field work, might in some circumstances be one of the few remaining ways to advance the field and to generate new insights into the biology of ecosystems that are not easily accessible. The current COVID-19 pandemic, which makes sampling expeditions almost impossible without putting the health of the participating scientists on the line, is a very timely example.

SELECTION OF CITATIONS
SEARCH DETAIL